Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5'-monophosphates by using an engineered protein nanopore equipped with a molecular adapter.

نویسندگان

  • Yann Astier
  • Orit Braha
  • Hagan Bayley
چکیده

Individual nucleic acid molecules might be sequenced by the identification of nucleoside 5'-monophosphates as they are released by processive exonucleases. Here, we show that single molecule detection with a modified protein nanopore can be used to identify ribonucleoside and 2'-deoxyribonucleoside 5'-monophosphates, thereby taking a step along this path. Distinct levels of current block are observed for each of the four members of a set of nucleoside 5'-monophosphates when the molecules bind within a mutant alpha-hemolysin pore, (M113R)(7), equipped with the molecular adapter heptakis-(6-deoxy-6-amino)-beta-cyclodextrin. While our results compare favorably with alternative approaches, further work will be required to improve the accuracy of identification of the nucleic acid bases, to feed each released nucleotide into the pore, and to ensure that every nucleotide is captured by the adapter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous base identification for single-molecule nanopore DNA sequencing.

A single-molecule method for sequencing DNA that does not require fluorescent labelling could reduce costs and increase sequencing speeds. An exonuclease enzyme might be used to cleave individual nucleotide molecules from the DNA, and when coupled to an appropriate detection system, these nucleotides could be identified in the correct order. Here, we show that a protein nanopore with a covalent...

متن کامل

Strategies and Clinical Applications of Next Generation Sequencing

Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput se­quencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...

متن کامل

Detection of Ammonia and Phosphine Gas using Heterojunction Biomolecular Chain with Multilayer GaAs Nanopore Electrode

This paper presents Density Functional Theory and Non-Equilibrium Green’s Function based First Principles calculations to explore the sensing property of Adenine and Thymine based hetero-junction chins for Ammonia and Phosphine gas molecules. This modeling and simulation technique plays an important and crucial role in the fast growing semiconductor based nanotechnology field. The hetero-juncti...

متن کامل

Strategies and Clinical Applications of Next Generation Sequencing

Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput se­quencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...

متن کامل

Single-molecule sensing electrode embedded in-plane nanopore

Electrode-embedded nanopore is considered as a promising device structure for label-free single-molecule sequencing, the principle of which is based on nucleotide identification via transverse electron tunnelling current flowing through a DNA translocating through the pore. Yet, fabrication of a molecular-scale electrode-nanopore detector has been a formidable task that requires atomic-level al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 128 5  شماره 

صفحات  -

تاریخ انتشار 2006